Rheological Behavior of Aqueous Suspensions of Highly-Refine Pulp Fibres

Authors

DOI:

https://doi.org/10.31265/atnrs.866

Abstract

This study focuses on the rheological properties of highly-refined pulp fibres (HRF) as a potential alternative to energy-intensive microfibrillated and nanofibrillated celluloses (MFC/NFC). HRF, produced via conventional refining, has a broad size distribution but may offer similar functional benefits. We performed a detailed rheological analysis of HRF suspensions at four refining levels and five solids contents (1.2–3.0 wt%), using amplitude and frequency sweep measurements to assess viscoelastic properties, and steady-state viscosity measurements to examine flow behaviour.

Author Biographies

  • Antti Koponen

    VTT Technical Research Centre of Finland Ltd

  • Juan Cecchini

    Valmet Technologies, Inc.

  • Marjo Järvinen

    VTT Technical Research Centre of Finland Ltd

  • Olli-Ville Laukkanen

    VTT Technical Research Centre of Finland Ltd

References

Mohtaschemi, M., Dimic-Misic, K., Puisto, A., Korhonen, M., Maloney, T., Paltakari, J. Alava, M., Rheological characterization of fibrillated cellulose suspensions via bucket vane viscometer, Cellulose 2014, 21, 1305-1312.

https://doi.org/10.1007/s10570-014-0235-1

Barnes, H., Nguyen, Q., Rotating vane rheometry-a review, Journal of Non-Newtonian Fluid Mechanics 2001, 98(1), 1-14.

https://doi.org/10.1016/S0377-0257(01)00095-7

Chaparian, E., Owens, C., McKinley, G., Computational rheometry of yielding and viscoplastic flow in vane-and-cup rheometer fixtures, Journal of Non-Newtonian Fluid Mechanics 2022, 307, 104857.

https://doi.org/10.1016/j.jnnfm.2022.104857

Hubbe, M., Tayeb, P., Joyce, M., Tyagi, P., Kehoe, M., Dimic-Misic, K., Pal, L., Rheology of nanocellulose-rich aqueous suspensions: a review, Bioresources 2017, 12(4), 9556-9661.

https://doi.org/10.15376/biores.12.4.Hubbe

Jäsberg, A., Heiskanen, S., Cecchini, J., Kiiskinen, T., Koponen, A., Characterizing rheological behavior and fluidization of highly refined furnishes for process optimization, TAPPI Journal 2024, 23(4), 200-208.

https://doi.org/10.32964/TJ23.4.200

Koponen, A., The effect of consistency on the shear rheology of aqueous suspensions of cellulose micro- and nanofibrils: a review, Cellulose 2020, 27(4), 1879-1897.

https://doi.org/10.1007/s10570-019-02908-w

Nechyporchuk, O., Naceur Belgacem M., Pignon F., Rheological properties of micro-/nanofibrillated cellulose suspensions: Wall-slip and shear banding phenomena, Carbohydrate Polymers 2014, 112, 432-439.

https://doi.org/10.1016/j.carbpol.2014.05.092

Rezayati Charani, P., Dehghani-Firouzabadi, M., E. Afra, E., Shaker, A., Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp, Cellulose 2013, 20, 727-740.

https://doi.org/10.1007/s10570-013-9862-1

Schenker, M., Schoelkopf, J., Gane, P., Mangin, P., Influence of shear rheometer measurement systems on the rheological properties of microfibrillated cellulose (MFC) suspensions, Cellulose 2018, 25, 961-976.

https://doi.org/10.1007/s10570-017-1642-x

Rezayati Charani, P., Dehghani-Firouzabadi, M., Afra, E., Shakeri, A., Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 2013, 20, 727-740.

https://doi.org/10.1007/s10570-013-9862-1

Agoda-Tandjawa, G., Durand, S., Berot, S., Blassel, C., Gaillard, C., Garnier, C., Doublier, J., Rheological characterization of microfibrillated cellulose suspensions after freezing, Carbohydrate Polymers 2010, 80(3), 677-686.

https://doi.org/10.1016/j.carbpol.2009.11.045

Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberg, M., Ruokolainen, J., Laine, J., Larsson, P., Ikkala, O., Lindström, T., Biomacromolecules 2007 8(6), 1934-1941.

https://doi.org/10.1021/bm061215p

Downloads

Published

2025-06-10