Rheology in Fibre Formation for Meat-Analogues Data Analysis of Protein Melt Rheology Data
DOI:
https://doi.org/10.31265/atnrs.864Abstract
Global meat consumption increased four-fold during the last fifty years, while population doubled1. Even if the increase in European meat consumption has slowed (currently 80 kg per capita, twice the world average), it is forecasted to increase by 10% more to 20302–4. The increase in meat eating is also nutritionally alarming as excessive consumption has been linked to health problems, such as coronary heart disease and certain cancers5.
Fibrous, meat-like analogues are today commercially produced from soy, pea and wheat, utilizing an extruder to form a protein melt at high moisture content, high temperature and high pressure with subsequent active cooling on exit. A common denominator for the fibre formation in meat-analogues and plastics is that it is known how to produce the fibres but not exactly why they are formed. Consequently, it is still difficult to utilize the full potential of these techniques.
The current hypothesis on the mechanisms responsible for the fibre formation contribute to understanding but are not sufficient to fully describe the formation and cannot be used to predict fibre formation ability of protein melts thus hampering the use of more sustainable protein sources. Overall, the hypotheses range from “physical”6–8, describing mechanisms in terms of fluid dynamics, heat transfer and phase separation, to “chemical” emphasizing the chemical interactions between protein chains or polymer crystallites.
This contribution will focus on rheology of the protein melts, and especially on how to use state-of-the-art statistical analysis to determine the influence of temperature, protein and moisture content on rheological properties of the melts.
References
(1) Weis, T. SFSGEC - Meatification and the Madness of the Doubling Narrative. Can. Food Stud. Rev. Can. Études Sur Aliment. 2015, 2 (2), 296-303.
https://doi.org/10.15353/cfs-rcea.v2i2.105
(2) Steinfeld, H. Livestock's Long Shadow - Environmental Issues and Options; Food and Agriculture Organization of the United Nations (FAO), 2006. http://www.fao.org/3/a0701e/a0701e00.htm (accessed 2021-03-29).
(3) Westhoek, H. The Protein Puzzle - The Consumption of Meat, Dairy and Fish in the European Union; PBL Netherlands Environmental Assessment, 2011.
(4) FAOSTAT. FAOSTAT. http://faostat.fao.org/ (accessed 2010-09-23).
(5) Tammi, R.; Kaartinen, N. E.; Harald, K.; Maukonen, M.; Tapanainen, H.; Smith-Warner, S. A.; Albanes, D.; Eriksson, J. G.; Jousilahti, P.; Koskinen, S.; Laaksonen, M. A.; Heikkinen, S.; Pitkäniemi, J.; Pajari, A.-M.; Männistö, S. Partial Substitution of Red Meat or Processed Meat with Plant-Based Foods and the Risk of Colorectal Cancer. Eur. J. Epidemiol. 2024, 39 (4), 419-428.
https://doi.org/10.1007/s10654-024-01096-7
(6) Sägesser, C.; Mair, T.; Braun, A.; Dumpler, J.; Fischer, P.; Mathys, A. Application of a Shear Cell for the Simulation of Extrusion to Test the Structurability of Raw Materials. Food Hydrocoll. 2025, 160, 110736.
https://doi.org/10.1016/j.foodhyd.2024.110736
(7) Kaunisto, E.; Wassén, S.; Stading, M. A Thermodynamical Finite Element Model of the Fibre Formation Process during Extrusion of High-Moisture Meat Analogues. J. Food Eng. 2024, 362, 111760.
https://doi.org/10.1016/j.jfoodeng.2023.111760
(8) Sandoval Murillo, J. L.; Osen, R.; Hiermaier, S.; Ganzenmüller, G. Towards Understanding the Mechanism of Fibrous Texture Formation during High-Moisture Extrusion of Meat Substitutes. J. Food Eng. 2019, 242, 8-20.
https://doi.org/10.1016/j.jfoodeng.2018.08.009
(9) Gerber, P. J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities.; Food and Agriculture Organization of the United Nations (FAO): Rome, 2013. https://www.cabidigitallibrary.org/doi/full/10.5555/20133417883 (accessed 2025-04-22).
(10) Glenn, A. J.; Wang, F.; Tessier, A.-J.; Manson, J. E.; Rimm, E. B.; Mukamal, K. J.; Sun, Q.; Willett, W. C.; Rexrode, K. M.; Jenkins, D. J.; Hu, F. B. Dietary Plant-to-Animal Protein Ratio and Risk of Cardiovascular Disease in 3 Prospective Cohorts. Am. J. Clin. Nutr. 2024, 120 (6), 1373-1386.
https://doi.org/10.1016/j.ajcnut.2024.09.006
(11) Cheftel, J. C.; Kitagawa, M.; Quéguiner, C. New Protein Texturization Processes by Extrusion Cooking at High Moisture Levels. Food Rev. Int. 1992, 8 (2), 235-275.
https://doi.org/10.1080/87559129209540940
(12) Jones, O. G. Recent Advances in the Functionality of Non-Animal-Sourced Proteins Contributing to Their Use in Meat Analogs. Curr. Opin. Food Sci. 2016, 7, 7-13.
https://doi.org/10.1016/j.cofs.2015.08.002
(13) Kyriakopoulou, K.; Keppler, J. K.; Van Der Goot, A. J.; Boom, R. M. Alternatives to Meat and Dairy. Annu. Rev. Food Sci. Technol. 2021, 12 (1), 29-50.
https://doi.org/10.1146/annurev-food-062520-101850
(14) Krona, A.; Klose, F. P.; Gold, J.; Kadar, R.; Stading, M. Developing Cultured Meat Scaffolds of Extruded Vegetable-Based Proteins. Annu Trans. Nord. Rheol Soc 2017, 25, 311-313.
(15) Tsegaye, B.; Barman, S.; Bovagne, L.; Ellwanger, F.; Kaunisto, E.; Lorén, N.; Kádár, R.; Stading, M. Rheological Properties of Pea Protein Melts Used for Producing Meat Analogues. Appl. Rheol. 2025, 35 (1), 20250036.
https://doi.org/10.1515/arh-2025-0036
(16) Stading, M.; Langer, R. Mechanical Shear Properties of Cell-Polymer Cartilage Constructs. Tissue Eng. 1999, 5 (3), 241-250.
https://doi.org/10.1089/ten.1999.5.241
(17) Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer New York: New York, NY, 2001.
https://doi.org/10.1007/978-0-387-21606-5
(18) James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. An Introduction to Statistical Learning: With Applications in Python; Springer Texts in Statistics; Springer International Publishing: Cham, 2023.
https://doi.org/10.1007/978-3-031-38747-0
(19) Hastie, T.; Tibshirani, R. Generalized Additive Models. Stat. Sci. 1986, 1 (3), 297-310.
https://doi.org/10.1214/ss/1177013604
(20) Ruppert, D.; Wand, M. P.; Carroll, R. J. Semiparametric Regression; Cambridge university press, 2003.
https://doi.org/10.1017/CBO9780511755453
(21) Mundo, A. I.; Tipton, J. R.; Muldoon, T. J. Generalized Additive Models to Analyze Nonlinear Trends in Biomedical Longitudinal Data Using R: Beyond Repeated Measures ANOVA and Linear Mixed Models. Stat. Med. 2022, 41 (21), 4266-4283.
https://doi.org/10.1002/sim.9505
(22) Yu, Z.; Guindani, M.; Grieco, S. F.; Chen, L.; Holmes, T. C.; Xu, X. Beyond t Test and ANOVA: Applications of Mixed-Effects Models for More Rigorous Statistical Analysis in Neuroscience Research. Neuron 2022, 110 (1), 21-35.
https://doi.org/10.1016/j.neuron.2021.10.030
(23) Caruana, R.; Lou, Y.; Gehrke, J.; Koch, P.; Sturm, M.; Elhadad, N. Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-Day Readmission. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; ACM: Sydney NSW Australia, 2015; pp 1721-1730.
https://doi.org/10.1145/2783258.2788613
(24) Wood, S. N. Generalized Additive Models: An Introduction with R; chapman and hall/CRC, 2017.
https://doi.org/10.1201/9781315370279
(25) Wood, S. N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73 (1), 3-36.
https://doi.org/10.1111/j.1467-9868.2010.00749.x
(26) Wood, S. N. Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models. J. Am. Stat. Assoc. 2004, 99 (467), 673-686.
https://doi.org/10.1198/016214504000000980
(27) Simpson, G. L. Gratia: Graceful Ggplot-Based Graphics and Other Functions for GAMs Fitted Using Mgcv. R Package Version 0100 2024.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sandra Barman, Erik Kaunisto, Mats Stading

This work is licensed under a Creative Commons Attribution 4.0 International License.