Hydrophobic Modification of Bentonite

Unravelling the Impacts of Aluminium Cation on Silica-Water Interface

Authors

DOI:

https://doi.org/10.31265/atnrs.774

Abstract

Silica, a predominant metal oxide and fundamental component of the Earth’s crust, exerts significant influence on diverse geochemical and industrial processes through its interactions with water. This study delves into the surface modification of bentonite clay, as a naturally occurring aluminosilicate source, via treatment with varied concentrations of Al(NO3)3, as a novel surface modification approach, and H2 SO4, as a control technique. The obtained results elucidated important alterations in micro-scale surface characteristics, colloidal stability, and rheological behaviour of the aqueous solutions derived from the modified bentonite samples.

Zeta potential analyses showed shifts from a stable colloidal solution in untreated bentonite to heightened instability following aluminium nitrate (and acid) treatment(s). In addition, micro-scale surface analyses employing scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS) and Fourier-transform infrared (FTIR) revealed significant changes, encompassing heightened degree of coagulation, caused by intensified neutralization, and diminished swelling capacities induced by surface modifications. EDS analysis validated cation exchange processes and intensified agglomeration with Al(NO3)3 treatment. Furthermore, the stability and rheological behaviour of resulting aqueous fluids demonstrated reduced stability in Al(NO3 )-treated samples, comparable to acid-treated samples, indicative of hydrophobic surfaces post-treatment. The findings highlighted the effectiveness of the applied treatment technique, emphasizing practical implications for surface-treated bentonite utilization in different environments. However, observed variations influenced by ion type and concentration prompt the imperative for further research to unveil specific mechanisms of treatment approaches on aluminosilicate systems. This endeavour contributes to advancing comprehension and optimization of silicate performance across diverse applications.

Author Biographies

Hazzaz Bin Yousuf

Department of Energy and Petroleum Engineering
Faculty of Science and Technology
University of Stavanger

Seyed Hasan Hajiabadi

Department of Energy and Petroleum Engineering
Faculty of Science and Technology
University of Stavanger

Pouya Khalili

Department of Energy and Petroleum Engineering
Faculty of Science and Technology
University of Stavanger

Mahmoud Khalifeh

Professor
Department of Energy and Petroleum Engineering
Faculty of Science and Technology
University of Stavanger

References

(1) Israelachvili, J. N. Intermolecular and surface forces; Academic press, 2011.

(2) Van Oss, C.; Giese, R. Surface modification of clays and related materials. Journal of dispersion science and technology 2003, 24 (3-4), 363-376.

https://doi.org/10.1081/DIS-120021795

(3) Giese, R. F.; Van Oss, C. J. Colloid and surface properties of clays and related minerals; CRC press, 2002.

https://doi.org/10.1201/9780203910658

(4) Keane, M. A. Interfacial applications in environmental engineering; CRC Press, 2002.

https://doi.org/10.1201/9780367800550

(5) Sulpizi, M.; Gaigeot, M.-P.; Sprik, M. The silica-water interface: how the silanols determine the surface acidity and modulate the water properties. Journal of chemical theory and computation 2012, 8 (3), 1037-1047.

https://doi.org/10.1021/ct2007154

(6) Payne, C. C. Applications of colloidal silica: Past, present, and future. ACS Publications, 1994.

https://doi.org/10.1021/ba-1994-0234.ch029

(7) Azam, S.; Darlington, A.; Gibbs-Davis, J. M. The influence of concentration on specific ion effects at the silica/water interface. Journal of Physics: Condensed Matter 2014, 26 (24), 244107.

https://doi.org/10.1088/0953-8984/26/24/244107

(8) Nayl, A.; Abd-Elhamid, A.; Aly, A. A.; Bräse, S. Recent progress in the applications of silica-based nanoparticles. RSC advances 2022, 12 (22), 13706-13726.

https://doi.org/10.1039/D2RA01587K

(9) Huang, Y.; Li, P.; Zhao, R.; Zhao, L.; Liu, J.; Peng, S.; Fu, X.; Wang, X.; Luo, R.; Wang, R.; Zhang, Z. Silica nanoparticles: Biomedical applications and toxicity. Biomedicine & Pharmacotherapy 2022, 151, 113053.

https://doi.org/10.1016/j.biopha.2022.113053

(10) Kuciński, K.; Jankowska-Wajda, M.; Ratajczak, T.; Bałabańska-Trybuś, S.; Schulmann, A.; Maciejewski, H.; Chmielewski, M. K.; Hreczycho, G. Silica Surface Modification and Its Application in Permanent Link with Nucleic Acids. ACS Omega 2018, 3 (6), 5931-5937.

https://doi.org/10.1021/acsomega.8b00547

(11) Hajiabadi, S. H.; Khalifeh, M.; van Noort, R.; Silva Santos Moreira, P. H. Review on Geopolymers as Wellbore Sealants: State of the Art Optimization for CO2 Exposure and Perspectives. ACS Omega 2023.

https://doi.org/10.1021/acsomega.3c01777

(12) Hajiabadi, S.; Khalifeh, M.; Van Noort, R.; Moreira, P. S. S. Effect of magnesium-bearing additives on the properties of a granite-based geopolymer sealant for CCS. In 84th EAGE Annual Conference & Exhibition, 2023; European Association of Geoscientists & Engineers: Vol. 2023, pp 1-5.

https://doi.org/10.3997/2214-4609.202310742

(13) Hajiabadi, S. H.; Khalifeh, M.; van Noort, R. Multiscale insights into mechanical performance of a granite-based geopolymer: Unveiling the micro to macro behavior. Geoenergy Science and Engineering 2023, 231, 212375.

https://doi.org/10.1016/j.geoen.2023.212375

(14) Xue, X.; Liu, Y.-L.; Dai, J.-G.; Poon, C.-S.; Zhang, W.-D.; Zhang, P. Inhibiting efflorescence formation on fly ash-based geopolymer via silane surface modification. Cement and Concrete Composites 2018, 94, 43-52.

https://doi.org/10.1016/j.cemconcomp.2018.08.013

(15) Lv, X.-s.; Qin, Y.; Lin, Z.-x.; Tian, Z.-k.; Cui, X.-m. Inhibition of Efflorescence in Na-Based Geopolymer Inorganic Coating. ACS Omega 2020, 5 (24), 14822-14830.

https://doi.org/10.1021/acsomega.0c01919

(16) Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Effect of hydrophobic surface-modified fine aggregates on efflorescence control in geopolymer. Cement and Concrete Composites 2022, 126, 104337.

https://doi.org/10.1016/j.cemconcomp.2021.104337

(17) Li, X.; Li, Z. Surface treatment of inorganic modifier for improving carbonation resistance of geopolymers. Construction and Building Materials 2023, 400, 132748.

https://doi.org/10.1016/j.conbuildmat.2023.132748

(18) Darzi, H. H.; Fouji, M.; Heidarabad, R. G.; Aghaei, H.; Hajiabadi, S. H.; Bedrikovetsky, P.; Mahani, H. Carbon-based nanocomposites: Distinguishing between deep-bed filtration and external filter cake by coupling core-scale mud-flow tests with computed tomography imaging. Journal of Natural Gas Science and Engineering 2022, 105, 104707.

https://doi.org/10.1016/j.jngse.2022.104707

(19) Binks, B. P.; Clint, J. H.; Whitby, C. P. Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles. Langmuir 2005, 21 (12), 5307-5316.

https://doi.org/10.1021/la050255w

(20) Zhang, R.; Zhu, X.; Cai, Y. The Phase Transformation Mechanism of Bentonite‐Stabilized and Cetyltrimethylammonium Bromide‐Stabilized Emulsions and Application in Reversible Emulsification Oil‐Based Drilling Fluids. Journal of Surfactants and Detergents 2019, 22 (3), 525-534.

https://doi.org/10.1002/jsde.12231

(21) Mahmoud, A.; Gajbhiye, R.; Elkatatny, S. Application of organoclays in oil-based drilling fluids: a review. ACS omega 2023, 8 (33), 29847-29858.

https://doi.org/10.1021/acsomega.2c07679

(22) Andrunik, M.; Bajda, T. Modification of bentonite with cationic and nonionic surfactants: Structural and textural features. Materials 2019, 12 (22), 3772.

https://doi.org/10.3390/ma12223772

(23) Paria, S.; Khilar, K. C. A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Advances in colloid and interface science 2004, 110 (3), 75-95.

https://doi.org/10.1016/j.cis.2004.03.001

(24) Ratkievicius, L. A.; Da Cunha Filho, F. J. V.; Neto, E. L. D. B.; Santanna, V. C. Modification of bentonite clay by a cationic surfactant to be used as a viscosity enhancer in vegetable-oil-based drilling fluid. Applied Clay Science 2017, 135, 307-312.

https://doi.org/10.1016/j.clay.2016.10.011

(25) Yang, C.; Zhu, Y.; Wang, J.; Li, Z.; Su, X.; Niu, C. Hydrothermal synthesis of TiO2-WO3-bentonite composites: conventional versus ultrasonic pretreatments and their adsorption of methylene blue. Applied Clay Science 2015, 105, 243-251.

https://doi.org/10.1016/j.clay.2015.01.002

(26) Booij, E.; Kloprogge, J. T.; Van Veen, J. R. Large pore REE/Al pillared bentonites: Preparation, structural aspects and catalytic properties. Applied Clay Science 1996, 11 (2-4), 155-162.

https://doi.org/10.1016/S0169-1317(96)00019-1

(27) Shattar, S. F. A.; Zakaria, N. A.; Foo, K. Y. One step acid activation of bentonite derived adsorbent for the effective remediation of the new generation of industrial pesticides. Scientific reports 2020, 10 (1), 20151.

https://doi.org/10.1038/s41598-020-76723-w

(28) Carrado, K. A.; Komadel, P. Acid activation of bentonites and polymer-clay nanocomposites. Elements 2009, 5 (2), 111-116.

https://doi.org/10.2113/gselements.5.2.111

(29) Hajiabadi, S. H.; Bedrikovetsky, P.; Mahani, H.; Khoshsima, A.; Aghaei, H.; Kalateh-Aghamohammadi, M.; Habibi, S. Effects of surface modified nanosilica on drilling fluid and formation damage. Journal of Petroleum Science and Engineering 2020, 194, 107559.

https://doi.org/10.1016/j.petrol.2020.107559

(30) Hajiabadi, S. H.; Aghaei, H.; Kalateh-Aghamohammadi, M.; Sanati, A.; Kazemi-Beydokhti, A.; Esmaeilzadeh, F. A comprehensive empirical, analytical and tomographic investigation on rheology and formation damage behavior of a novel nano-modified invert emulsion drilling fluid. Journal of Petroleum Science and Engineering 2019, 181, 106257.

https://doi.org/10.1016/j.petrol.2019.106257

(31) Tyagi, B.; Chudasama, C. D.; Jasra, R. V. Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2006, 64 (2), 273-278.

https://doi.org/10.1016/j.saa.2005.07.018

(32) D'Amico, D. A.; Ollier, R. P.; Alvarez, V. A.; Schroeder, W. F.; Cyras, V. P. Modification of bentonite by combination of reactions of acid-activation, silylation and ionic exchange. Applied Clay Science 2014, 99, 254-260.

https://doi.org/10.1016/j.clay.2014.07.002

(33) Maged, A.; Kharbish, S.; Ismael, I. S.; Bhatnagar, A. Characterization of activated bentonite clay mineral and the mechanisms underlying its sorption for ciprofloxacin from aqueous solution. Environmental Science and Pollution Research 2020, 27, 32980-32997.

https://doi.org/10.1007/s11356-020-09267-1

(34) Widi, R. K.; Budhyantoro, A.; Christianto, A. Phenol hydroxylation on Al-Fe modified-bentonite: Effect of Fe loading, temperature and reaction time. In IOP Conference Series: Materials Science and Engineering, 2017; IOP Publishing: Vol. 273, p 012007.

https://doi.org/10.1088/1757-899X/273/1/012007

(35) Chai, W.; Huang, Y.; Han, G.; Liu, J.; Yang, S.; Cao, Y. An enhanced study on adsorption of Al (iii) onto bentonite and kaolin: kinetics, isotherms, and mechanisms. Mineral Processing and Extractive Metallurgy Review 2017, 38 (2), 106-115.

https://doi.org/10.1080/08827508.2016.1262862

(36) Jardine, P.; Parker, J.; Zelazny, L. Kinetics and Mechanisms of Aluminum Adsorption on Kaolinite Using a Two‐site Nonequilibrium Transport Model. Soil Science Society of America Journal 1985, 49 (4), 867-873.

https://doi.org/10.2136/sssaj1985.03615995004900040016x

(37) Jardine, P.; Zelazny, L.; Parker, J. Mechanisms of aluminum adsorption on clay minerals and peat. Soil Science Society of America Journal 1985, 49 (4), 862-867.

https://doi.org/10.2136/sssaj1985.03615995004900040015x

(38) Walker, W. J.; Cronan, C. S.; Patterson, H. H. A kinetic study of aluminum adsorption by aluminosilicate clay minerals. Geochimica et Cosmochimica Acta 1988, 52 (1), 55-62.

https://doi.org/10.1016/0016-7037(88)90056-7

(39) Tomić, Z. P.; Ašanin, D.; Antić-Mladenović, S.; Poharc-Logar, V.; Makreski, P. NIR and MIR spectroscopic characteristics of hydrophilic and hydrophobic bentonite treated with sulphuric acid. Vibrational Spectroscopy 2012, 58, 95-103.

https://doi.org/10.1016/j.vibspec.2011.11.002

(40) Kelessidis, V. C.; Tsamantaki, C.; Dalamarinis, P. Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Applied Clay Science 2007, 38 (1-2), 86-96.

https://doi.org/10.1016/j.clay.2007.01.011

(41) Tombácz, E.; Szekeres, M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Applied Clay Science 2006, 34 (1-4), 105-124.

https://doi.org/10.1016/j.clay.2006.05.009

(42) Duc, M.; Gaboriaud, F.; Thomas, F. Sensitivity of the acid-base properties of clays to the methods of preparation and measurement: 1. Literature review. Journal of colloid and interface science 2005, 289 (1), 139-147.

https://doi.org/10.1016/j.jcis.2005.03.060

(43) Dodoo, D.; Fynn, G. E.; Yawson, E. S. C.; Appiah, G.; Suleiman, N.; Yaya, A. Eco-efficient treatment of hazardous bauxite liquid-residue using acid-activated clays. Cleaner Chemical Engineering 2022, 3, 100040.

https://doi.org/10.1016/j.clce.2022.100040

(44) Tabak, A.; Yilmaz, N.; Eren, E.; Caglar, B.; Afsin, B.; Sarihan, A. Structural analysis of naproxen-intercalated bentonite (Unye). Chemical Engineering Journal 2011, 174 (1), 281-288.

https://doi.org/10.1016/j.cej.2011.09.027

(45) Goebbert, D. J.; Garand, E.; Wende, T.; Bergmann, R.; Meijer, G.; Asmis, K. R.; Neumark, D. M. Infrared spectroscopy of the microhydrated nitrate ions NO3−(H2O) 1− 6. The journal of physical chemistry A 2009, 113 (26), 7584-7592.

https://doi.org/10.1021/jp9017103

(46) Ryan, P.; Huertas, F. J. The temporal evolution of pedogenic Fe-smectite to Fe-kaolin via interstratified kaolin-smectite in a moist tropical soil chronosequence. Geoderma 2009, 151 (1-2), 1-15.

https://doi.org/10.1016/j.geoderma.2009.03.010

(47) Gonzalez-Estrella, J.; Ellison, J.; Stormont, J. C.; Shaikh, N.; Peterson, E. J.; Lichtner, P.; Cerrato, J. M. Saline brine reaction with fractured wellbore cement and changes in hardness and hydraulic properties. Environmental Engineering Science 2021, 38 (3), 143-153.

https://doi.org/10.1089/ees.2020.0093

(48) Baik, M. H.; Lee, S. Y. Colloidal stability of bentonite clay considering surface charge properties as a function of pH and ionic strength. Journal of Industrial and Engineering Chemistry 2010, 16 (5), 837-841.

https://doi.org/10.1016/j.jiec.2010.05.002

(49) Yuan, G.; Cao, Y.; Schulz, H.-M.; Hao, F.; Gluyas, J.; Liu, K.; Yang, T.; Wang, Y.; Xi, K.; Li, F. A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. Earth-science reviews 2019, 191, 114-140.

https://doi.org/10.1016/j.earscirev.2019.02.004

(50) Yuan, H.; Deng, W.; Zhu, X.; Liu, G.; Craig, V. S. J. Colloidal systems in concentrated electrolyte solutions exhibit re-entrant long-range electrostatic interactions due to underscreening. Langmuir 2022, 38 (19), 6164-6173.

https://doi.org/10.1021/acs.langmuir.2c00519

(51) Paton, P.; Talens-Alesson, F. Effect of pH on the Flocculation of SDS Micelles by Al 3+. Colloid and Polymer Science 2001, 279, 196-199.

https://doi.org/10.1007/s003960000444

(52) Yildiz, N.; Aktas, Z.; Calimli, A. Sulphuric acid activation of a calcium bentonite. 2004.

https://doi.org/10.1080/02726350490422392

(53) Kazemi-Beydokhti, A.; Hajiabadi, S. H. Rheological investigation of smart polymer/carbon nanotube complex on properties of water-based drilling fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2018, 556, 23-29.

https://doi.org/10.1016/j.colsurfa.2018.07.058

(54) Luckham, P. F.; Rossi, S. The colloidal and rheological properties of bentonite suspensions. Advances in Colloid and Interface Science 1999, 82 (1), 43-92.

https://doi.org/10.1016/S0001-8686(99)00005-6

Cover

Downloads

Published

2024-05-21