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ABSTRACT 

This paper presents an overview of the capabilities of COMSOL Multiphysics® for simu-
lating non-Newtonian fuids, with an emphasis on m ultiphysics. It outlines the COMSOL 
implementation of inelastic and viscoelastic non-Newtonian fuid models and reviews the 
software’s ability to couple fuid fow with heat transfer, structural deformation, and mul-
tiphase fow modeling. 

FLUID FLOW MODELING 

COMSOL Multiphysics is a fnite e lement-based s imulation s oftware d esigned f or mod-
eling and solving physical problems involving processes such as fuid f ow, he at transfer, 
and structural deformation. Starting from individual physics, it is possible to combine 
multiple physical phenomena in the COMSOL environment to simulate real-world behav-
ior. COMSOL includes several interfaces specifcally t ailored f or s imulating f ows with 
complex rheological behavior. 

Fluid motion can be described using simplifed m athematical m odels o r engineering 
correlations for specifc c ases. However, the most comprehensive description i s based on 
fundamental conservation laws: the continuity equation for mass conservation and the 
Navier–Stokes equations for momentum conservation: 

∂ρ 
∂t 

+ ∇ · (ρu) = 0 (1) 

! 
ρ 

∂u 
∂t 

+ u · ∇u = −∇p + ∇ · τ + f , (2) 

where u is the velocity feld, p is the pressure, ρ is the fuid density, τ is the stress tensor, 
and f is the body force (e.g., gravity). 

Inelastic non-Newtonian models 

Solving momentum conservation equations requires specifying the rheological behavior of 
the fuid through the stress tensor τ , which must be defned by a suitable constitutive 



equation. For an incompressible Newtonian fuid, the stress tensor can be written as � � 
τ = 2µD, D =

1 ∇u + (∇u)⊤ , (3)
2 

where µ is the viscosity. 
However, many fuids deviate from this simple relationship. COMSOL provides a 

comprehensive suite of built-in constitutive models for both inelastic and viscoelastic 
behaviors. Inelastic non-Newtonian models typically follow the form of Eq. 3, but with 
viscosity replaced by an apparent viscosity, often calculated from the shear rate γ̇ =√ 
2D : D. These models fall into two broad categories: those with yield stress behavior 

( viscoplastic) and those without. For fuids without yield stress behavior, COMSOL 
includes models such as the Power Law: 

µ = m(max( ̇γ, ˙ (4)γmin))
n−1 

where m and n are scalars. For n > 1, the fuid is shear thickening (dilatant); for n < 1, 
shear thinning (pseudoplastic); and n = 1 corresponds to a Newtonian fuid. The lower 
bound for the share rate γ̇min is introduced to avoid infnite viscosity at zero shear rate 
when n < 1. 

The Ellis and Sisko models ofer enhanced accuracy in diferent regimes. The Ellis 
model is a three-parameter model that is usually better than the power-law in matching 
experimental measurements in low and medium shear-rate regimes. The Sisko model 
includes both the power law region and an infnite shear plateau. 

The Carreau–Yasuda model can be described by the equation 

aµ = µ∞ + (µ0 − µ∞) [1 + (λγ̇)a] 
n−1 

(5) 

where λ is the time constant, µ0 is the zero-shear viscosity, µ∞ is the infnite-shear vis-
cosity, and a is the transition parameter. Eq. 5 allows the recovery of the Carreau, Cross, 
and Cross-Williamson models through specifc parameter choices. 

Viscoplastic fuid behavior is characterized by the existence of a yield stress, denoted 
as τy, a threshold that must be exceeded before signifcant deformation occurs. Constitu-
tive models for such fuids include this yield stress, which introduces numerical challenges 
due to the inherent discontinuity. To address these challenges, the Papanastasiou regu-
larization method2 is employed in COMSOL, thus enabling the modeling of both yielded 
and unyielded regions in a continuous manner. Five models for fuids exhibiting yield 
stress behavior are available: Bingham, Herschel–Bulkley, Casson, DeKee–Turcotte, and 
Robertson–Stif. For example, the Bingham plastic model with Papanastasiou regulariza-
tion is expressed as: � � 

−mγ̇τ = τy 1 − e + µpγ̇ (6) 
where µp is the plastic viscosity, and m is a regularization parameter that controls the 
sharpness of the transition between unyielded and yielded behavior. 

COMSOL also ofers the Houska model, a viscoplastic constitutive model. It extends 
the Bingham plastic model by incorporating a shear-rate-dependent viscosity, allowing 
it to better represent complex fow characteristics of structured fuids such as suspen-
sions and pastes. The model is particularly useful in capturing thixotropic behavior and 
structural recovery in time-dependent non-Newtonian fuids. 

The predefned models can be extended or customized using the equation-based model-
ing tools to implement user-defned constitutive relations, time-dependent viscosity func-
tions, or microstructural evolution equations relevant to thixotropic and viscoplastic ma-
terials. 



In COMSOL, it is possible to model the fow of non-Newtonian fuids through porous 
media using the concept of an apparent shear rate. This quantity represents the equivalent 
shear rate that would produce the same pressure drop in a porous medium as in a free-fow 
scenario for a given non-Newtonian fuid. The apparent shear rate is expressed as: 

|u|
γ̇app = α√ (7)

κεp 

where α is a correction factor that depends on the porous structure, κ is the permeability, 
and εp is the porosity of the medium. The value of α is not universal; it must be determined 
experimentally or estimated using pore-scale simulations. 

Viscoelastic models 

To model viscoelastic efects, the stress tensor is expressed as the sum of a viscous and 
an elastic contribution: 

τ = 2µsD + Te, (8) 

where Te is the elastic (or viscoelastic) stress tensor which is often represented as a sumP
of the individual modes: Te = m Tem . The multimode formulation provides a more 
accurate description of the rheological behavior of fuids with a spectrum of relaxation 
times typically resulting from the polydispersity of macromolecules. 

To complete the system of equations, a constitutive relation must be specifed for each 
mode. Only diferential constitutive models are available in COMSOL. These models can 
be formulated in diferent ways, depending on the choice of dependent variables. In a stress 
formulation, the extra stress tensor is the primary dependent variable. Alternatively, in a 
conformation formulation, an intermediate structural variable—the conformation tensor 
C—is used, with the stress determined as an explicit function of C. 

Several commonly used constitutive models can be expressed as hyperbolic partial 
diferential transport equations in the stress formulation1: 

U(Te) + fr(Te) = 
µe 

fp(Te) (9)
λe 

Here, fr and fp are model-specifc functions representing relaxation and viscous efects, 
respectively, λe is the relaxation time, and µe denotes the elastic viscosity. The function 
U(T) is the upper-convected derivative: � �∂Te TU(Te) = + u · ∇Te − ∇u · Te + Te · ∇u (10)

∂t 

This derivative is essential in viscoelastic fuid modeling because it ensures objectivity 
(frame-independence) of the constitutive equations. In other words, the stress response 
predicted by the model remains consistent under arbitrary rigid body motions of the 
coordinate system. 

The Oldroyd-B model is one of the simplest constitutive models for viscoelastic fu-
ids, representing a suspension of Hookean springs in a Newtonian solvent with fr = Te 

and fp = 1. Building on this foundation, more advanced models have been developed to 
capture the complex structural behavior of polymeric fuids. These next-generation mod-
els incorporate the concept of networks formed by interacting polymer macromolecules, 
enabling the continuum-based modeling of polymer melts and concentrated solutions. 
Additionally to the Oldroyd-B model, COMSOL ofers the Giesekus model that includes 



 

quadratic nonlinearity due to hydrodynamic drag between polymers, the FENE-P and 
FENE-CR models with fnitely extensible nonlinear elastic (FENE) springs to limit chain 
extensibility. The LPTT and EPTT models account for network elasticity to resist de-
formation, improving stability in extensional fows, and the fnally Rolie-Poly model that 
is derived based on tube theory, capturing reptation, chain stretching, and convective 
constraint release. 

The Weissenberg number, Wi, is a dimensionless number that characterizes the rela-
tive importance of elastic efects in a fowing viscoelastic fuid Wi = λeγ̇ where γ̇ is the 
characteristic shear rate. A high Weissenberg number indicates that elastic efects domi-
nate over viscous efects in the fow. In this regime, the elastic stresses can grow rapidly, 
which can lead to convergence issues or unphysical results. This problem is particularly 
severe in geometries with sharp corners and in fows with strong extensional components. 
Overcoming high Weissenberg number problems requires careful numerical stabilization 
and sometimes simplifed modeling approaches. 

MULTIPHYSICS COUPLINGS INVOLVING NON-NEWTONIAN 
FLUIDS 

One of the major advantages of using COMSOL is its seamless integration of multiphysics: 
non-Newtonian fuid fow can easily be coupled with other physical processes in the same 
model. This is particularly important for complex fuids, whose behavior often depend 
on temperature, chemical composition, or interactions with solid structures. 

Non-isothermal fow modeling 

Modeling non-isothermal fow is essential in many industrial applications involving non-
Newtonian fuids, because of the strong coupling between the fow, stress, and thermal 
felds, which signifcantly afect the material response. COMSOL addresses these problem 
through the Non-Isothermal Flow multiphysics interface, which couples the fuid fow 
equations with the heat transfer equations. The heat transfer equation is expressed as: ! 

ρCp 
∂T 

+ u · ∇T = k∇2T + Q (11)
∂t 

where ρ is the fuid density, Cp is the specifc heat capacity, k is the thermal conductivity, 
and Q is the internal heat source term. The Nonisothermal Flow interface is pre-confgured 
to include the heat source Q that includes several contributions: 

tr(Te)
Q = 2µsD : D + α Te : D + (1 − α) (12)

2λe(T ) 

The frst term represents viscous heating, that is present in both Newtonian and non-
Newtonian fuids. For viscoelastic fows, the internal heat generation includes an irre-
versible dissipation term and a reversible component. In COMSOL, the reversible part is 
neglected (α = 1). 

Heating generally reduces viscosity due to increased molecular mobility. As tempera-
ture rises, polymer chains or molecular segments move more freely, leading to a decrease 



in fow resistance. This temperature-dependent behavior is modeled in COMSOL Multi-
physics using thermal functions: 

µs(T ) 
= αT (T ) (13)

µs(T0) 

For viscoelastic fows, it is assumed that both the relaxation time and elastic viscosity 
vary with temperature: 

µe(T ) λe(T ) 
= = αT (T ) (14)

µe(T0) λe(T0) 

where αT (T ) is a temperature-dependent scaling function. Several thermal function mod-
els are available, including Arrhenius, WLF (Williams–Landel–Ferry), exponential forms, 
and user-defned functions. 

Chemorheology 

In many industrial applications involving non-Newtonian fuids—such as thermoset poly-
mers, adhesives, and resins—viscosity is highly dependent on both temperature and the 
degree of cure. As curing progresses, chemical cross-linking between polymer chains re-
stricts molecular motion, leading to a signifcant rise in viscosity. In the later stages, the 
system may undergo gelation, where viscosity increases dramatically. 
This rise in viscosity can enhance viscous heating, which in turn raises the local tempera-
ture and further accelerates the curing process. The resulting interplay between thermal 
efects, curing kinetics, and viscous dissipation produces a highly nonlinear and tightly 
coupled behavior in the viscosity feld. 
Accurate simulation of such systems requires the simultaneous solution of the fow, heat 
transfer, and curing. The curing process is typically modeled using temperature-dependent 
reaction kinetics, where the degree of cure, c, evolves over time. A common form of the 
cure-kinetics equation is: 

∂c 
+ u · ∇c = R(T, c) (15)

∂t 
Available reaction models include the Sestak–Berggren, Kamal–Sourour, and n-th or-
der. To capture the sharp increase in viscosity during the curing of thermosetting poly-
mers—particularly when the polymer network is close to gelation—the Castro–Macosko 
and percolation-based viscosity models are included. 

Curing reactions are typically exothermic, releasing heat as crosslinking progresses: 

Qr = Hr 
dα 

(16)
dt 

where Hr is the total heat of reaction. COMSOL provides a dedicated coupling that 
automatically incorporates this source term into the heat transfer equation (Eq. 11). 

Fluid–Structure Interaction 

Fluid–Structure Interaction (FSI) refers to coupling fuid fow with solid mechanics so that 
a deformable structure and the fuid mutually infuence each other. COMSOL supports 
fully coupled FSI simulations even for non-Newtonian fuids. For example, one could 
simulate the fow of an inelastic or a viscoelastic fuid fowing through an elastic tube, 
capturing how the fuid pressure deforms the structure and how that deformation in turn 
alters the fow. 



Multiphase Flow and Free Surfaces 

Many non-Newtonian fuid applications—such as coating, mold flling, and extrusion—involve 
free surfaces or multiphase fows. COMSOL provides several methods for simulating two-
phase or multiphase fows with interface tracking, including the Level Set, Phase Field, 
and Moving Mesh (ALE) approaches. These methods can be directly coupled with non-
Newtonian fuid models using predefned two-phase fow multiphysics couplings. 

The beads-on-string structure is a phenomenon observed in thinning viscoelastic fla-
ments, surface tension and elastic stresses cause the flament to form droplet-like beads 
connected by thin threads. It is a classic example that is used to verify numerical simu-
lations. The problem is solved in COMSOL using the Oldroy B model and Moving Mesh 
(ALE) functionality. Fig. 1 shows the evolution of the flament at diferent times. The 
results are in good agreement with the experimental and simulation results presented in 
other publications3 . 

FIGURE 1: Filament profles at 5 diferent dimensionless times: 0, 20, 30, 100, and 300 

The next example illustrates the flling stage of an injection molding process. Molten 
polymer is injected into the top of a heated mold initially flled with air. The curing 
reaction is modeled using the Kamal–Sourour model, while the viscosity’s dependence on 
the degree of cure is described by the Castro–Macosko model. Shear rate dependence is 
captured using a power-law formulation. Figure 2 shows the distribution of viscosity 
and the degree of cure, along with the position of the interface between the air and the 
polymer melt. The problem is solved using two-phase fow with phase feld coupling, 
non-isothermal fow, and curing reaction heat coupling. 

In conclusion, the COMSOL Multiphysics simulation software is a practical tool for 
modeling coupled problems involving non-Newtonian fuid fow. It supports a range of 
non-Newtonian constitutive models and allows for the integration of fow with thermal, 
chemical, and structural efects. Built-in methods for handling free-surface and multi-
phase fows further extend its applicability. These features make it suitable for simulating 
processes such as polymer curing, coating, and biomedical fows, where complex rheolog-
ical behavior and multiphysics interactions are signifcant. 



FIGURE 2: Viscosity (left) and degree of cure (right) 
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