
 

RHEOLOGY IN FIBRE FORMATION FOR MEAT-ANALOGUES 
DATA ANALYSIS OF PROTEIN MELT RHEOLOGY DATA 

ABSTRACT 

Global meat consumption increased four-fold during the last fifty years, while population 

doubled1. Even if the increase in European meat consumption has slowed (currently 80 kg per 

capita, twice the world average), it is forecasted to increase by 10% more to 20302–4. The 

increase in meat eating is also nutritionally alarming as excessive consumption has been linked 

to health problems, such as coronary heart disease and certain cancers5. 

Fibrous, meat-like analogues are today commercially produced from soy, pea and wheat, 

utilizing an extruder to form a protein melt at high moisture content, high temperature and high 

pressure with subsequent active cooling on exit. A common denominator for the fibre formation 

in meat-analogues and plastics is that it is known how to produce the fibres but not exactly why 

they are formed. Consequently, it is still difficult to utilize the full potential of these techniques.  

The current hypothesis on the mechanisms responsible for the fibre formation contribute to 

understanding but are not sufficient to fully describe the formation and cannot be used to predict 

fibre formation ability of protein melts thus hampering the use of more sustainable protein 

sources. Overall, the hypotheses range from “physical”6–8, describing mechanisms in terms of 

fluid dynamics, heat transfer and phase separation, to “chemical” emphasizing the chemical 

interactions between protein chains or polymer crystallites.  

This contribution will focus on rheology of the protein melts, and especially on how to use 

state-of-the-art statistical analysis to determine the influence of temperature, protein and 

moisture content on rheological properties of the melts.  

 

INTRODUCTION 

The food chain is responsible for 25% of global greenhouse gas emissions, with meat production 

alone accounting for 14.5%9. Food production heavily relies on natural resources, and 75% of 

arable land in Europe and North America is dedicated to meat production. Between 1961 and 

2009, global meat consumption doubled, and with the growing population, it is expected to 

continue rising until at least 20502. This trend is concerning from a nutritional standpoint, as 

excessive meat consumption has been linked to health issues such as coronary heart disease and 

certain cancers5,10. 
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In the past five years, sales of plant-based meat analogues have surged, despite production 

methods being established since the early 1990s11. Today, fibrous analogues are commercially 

produced from soy, pea protein, and wheat gluten protein using an extruder to create a protein 

melt at high moisture content, temperature, and pressure, followed by active cooling upon exit12–

14. These products are commonly known as High-Moisture Meat Analogues (HMMA). While 

the production process for HMMA fibres is understood, the exact mechanisms behind their 

formation remain unclear, limiting the full potential of these techniques. 

This contribution will focus on the evaluation of rheological data of plant-protein melts15 in 

order to determine the contribution of temperature, protein and moisture content using state-of-

the-art statistical analysis.  

 

MATERIAL AND METHODS 

Sample preparation 
Pea protein isolate with 86% protein content, (Roquette Pisane M9, Lestrem, France) was mixed 

with 15% pea fibre (Cosucra Swelite Warcoing, Hainaut, Belgium) and fed into an extruder 

(Brabender TwinLab-F 20/40, Duisburg, Germany) where water was added to 60-68% of the 

total weight. The mixture was heated and sheared in the extruder to 100°C to form a melt and 

extruded into a 13 mm cylinder which was air cooled instead of going into the cooling die, se 

Fig. 1. The same mixture is known to form a fibrous structure when heated to 150°C with 

subsequent cooling to ~80° in the cooling die.  

 

 
FIGURE 1: Principle of meat HMMA extrusion and sample preparation. 

 
Rheometry 
An HR 30 rheometer (TA Instruments, New Castle, DE, USA) was used for Small Amplitude 

Oscillatory Shear (SAOS) analysis, equipped with a 25 mm-diameter parallel plate system. Both 

plates were temperature controlled, and the measuring system was enclosed in a solvent-trap 

enclosure. Slices 13 mm in diameter and 2 mm thick were cut using a vacuum holder16 and 

placed in the measuring gap. The gap was actively adopting to changes in samples volume with 

temperature. Mechanical spectra at 0.1-30 Hz were recorded during heating at 10°C intervals to 

give complex modulus as a function of angular frequency.  

 

Statistical modelling 
A variety of machine and statistical learning methods are available for analysing and 

interpreting data of the type presented in this study17,18. These range from classical methods 

such as linear regression and ANOVA, to more contemporary methods including regularized 

regression, random forests and neural networks. 

We will use models from the generalized additive mixed model (GAMM) framework19,20. 

The specific formulation of model components within this framework depends on whether a 

frequentist or Bayesian approach is taken. In essence, however, the GAMM framework allows 



for including smooth components as functions of predictor variables. These can be both 

parametric and non-parametric, and linear and non-linear. Regularization of smooth, non-linear 

effects ensure that models are not overfit to data. The framework also accommodates non-

Gaussian outcome distributions and supports modelling hierarchical and time-dependent 

structures using random components. The GAMM framework functions as an extension of 

classical statistical techniques, such as linear regression and ANOVA, encompassing these as 

special cases21,22. 

GAMM offer greater flexibility than classical statistical regression models, enabling the 

extraction of complex patterns within data. There is however a trade-off between flexibility and 

interpretability17,23. Compared to highly flexible machine learning methods such as random 

forests or neural networks, GAMMs tend to be more interpretable while still capturing nonlinear 

relationships. While highly flexible models like the mentioned machine learning methods may 

be preferable for large datasets due to their predictive power, for medium sized datasets such as 

the one presented here, GAMMs strike a good balance between flexibility and interpretability. 

We formulate two models to capture the influence of temperature (𝑇), moisture content 

(𝑀𝐶), protein concentration (𝑃𝐶) and experiment (𝐸). Both models are formulated related to 

1/𝑇 and 1/𝑀𝐶 due to connections with physically motivated Arrhenius equations. The first 

model includes non-linear smooth effects of 1/𝑇 and 1/𝑀𝐶 and random effects of 𝑃𝐶 and 𝐸, 

formulated as 

  

log(𝐺𝑖
∗) = 𝑓𝑇(1/𝑇𝑖) + 𝑓𝑀𝐶(1/𝑀𝐶𝐸𝑖

) + 𝜇𝑃𝐶𝑖
+ 𝜇𝐸𝑖

+ 𝜖𝑖.        (𝑀1) 

 

Each individual observation is indexed by 𝑖 = 1, … ,252. For every observation 𝑖, the 

corresponding complex modulus 𝐺𝑖
∗ is recorded, along with the temperature 𝑇𝑖 at which the 

measurement was made. Additionally, each observation is linked to one of 42 experiments, 

denoted by an experiment identifier 𝐸𝑖 ∈  (1, … ,42). Associated with each experiment are two 

variables: moisture content 𝑀𝐶𝐸𝑖
 and protein concentration 𝑃𝐶𝐸𝑖

. In the model, 𝑓𝑇 and 𝑓𝑀𝐶  

represent smooth functions of the inverse temperature and inverse moisture content, 

respectively. The terms 𝜇𝑃𝐶𝑖
 and 𝜇𝐸𝑖

 denote random effects, capturing variation by fitting 

individual intercepts for each protein concentration level and each experiment. Residual errors 

𝜖𝑖 are assumed to follow a normal distribution. Note that without the components 𝑓𝑇 and 𝑓𝑀𝐶 , 

model (M1) reduces to a classic ANOVA model. 

The second model instead includes linear effects of 1/𝑇 and 1/𝑀𝐶,  

 

log(𝐺𝑖
∗) = 𝛽𝑇/𝑇𝑖 + 𝛽𝑀𝐶/𝑀𝐶𝐸𝑖

+ 𝜇𝑃𝐶𝑖
+ 𝜇𝐸𝑖

+ 𝜖𝑖.        (𝑀2) 

 

Variable ranges used in the experiments are 𝑇 = 40, 50, 60, 70, 80, 90°C for temperature 

and 𝑃𝐶 = 75%, 80%, 85% for protein concentration. Five levels of added water were recorded, 

60, 62, 64, 66 and 68%, and moisture content 𝑀𝐶 was recorded for each experiment.  

This setup of using models of increasing complexity is a standard method for evaluating 

how much complexity is needed in a model24. A third model formulation is possible, where both 

linear components 1/𝑇 and 1/𝑀𝐶 and non-linear components 𝑓𝑇(1/𝑇) and 𝑓𝑀𝐶(1/𝑀𝐶). We 

denote this model (𝑀3). Model (𝑀1) and (𝑀3) are in practice the same. Model formulation 

(𝑀3) has the advantage that the model (𝑀3) is nested within (M3), which simplifies assessment 

of whether the inclusion of non-linear components is warranted.  

The models are fitted using the R package mgcv25,26. The adjusted 𝑅𝑎𝑑𝑗
2  is used as a measure 

of model fit. To quantify the contribution from each predictor, a model with (full model) and 



without (sub-model) the predictor is fitted, and the difference in 𝑅𝑎𝑑𝑗
2  between the two models 

is used to quantify the contribution from the predictor. The difference is denoted 𝛿𝑅𝑎𝑑𝑗
2 . More 

details are available in Tsegaye et al15.  

 

RESULTS AND DISCUSSION 

Statistical analysis 
The statistical analysis allows us to quantify the size and statistical significance of effects 

of individual variables, the non-linear nature of each effect, and potential interactions between 

variables. We also assess the importance of allowing for non-linear effects compared to using 

linear effects. 

Table 1 and Table 2 shows the importance (𝑅𝑎𝑑𝑗
2 ) and statistical significance (p-value) of 

each variable in model (M1) and model (M2), respectively (Table 1 and Table 2 are reproduced 

from Tsegaye et al.15). 

Evaluating if the non-linear smooth effects are actually needed is in part a subjective 

judgement. The non-linear components of model (M3) are statistically significant (p-value <
 1𝑒 − 16), but in general statistical significance does not necessarily imply practical 

significance. Comparing the model with non-linear components (model (M1)) and the model 

with linear components (model (M2)) in time and moisture content, model (M1) has 𝑅𝑎𝑑𝑗
2  99.2% 

while model (M2) has 𝑅𝑎𝑑𝑗
2  98.3%. Thus, there is definitely a non-linear component in the fitted 

relationships, but we leave to the reader the decision of whether the effect of the non-linear 

component is considerable enough to warrant choosing model (M1) over the simpler model 

(M2).  Fig. 1a) and b) provides more detail about the fitted non-linear effects and how they 

differ from linear effects (Fig. 1 is reproduced from the Supplementary material of Tsegaye et 

al.15.). 

The non-linear effects in Fig. 1 show that the effect of temperature, 𝑓𝑇(1/𝑇) ∈
[−0.48,0.61], is roughly three times the size of the effect of moisture content, 𝑓𝑀𝐶(1/𝑀𝐶) ∈
[−0.17,0.11]). The size of the effect of experiment, 𝜇𝐸𝑖

∈ [−0.18,0.27]), is between moisture 

content and temperature. This also fits with the ordering shown in Table 1. 

This means that effects we have not measured have a relatively large impact on the variation 

of the complex modulus 𝐺∗ between different experiments. When controlling for these effects 

using 𝜇𝐸𝑖
, however, the complex modulus is explained almost fully by temperature and moisture 

content. Note that the random effect 𝜇𝐸𝑖
 serves the same function as random effects in ANOVA, 

which controls for grouping / hierarchical structure in the data is not explicitly modelled using 

covariates. 

This indicates that unmeasured factors significantly contribute to the variability observed in 

the variation of rheological behaviour across experiments. However, once these influences are 

accounted for through the inclusion of the random term 𝜇𝐸𝑖
, the variation can be largely 

explained by temperature and moisture content as indicated by the high 𝑅𝑎𝑑𝑗
2 -values. 

Importantly, 𝜇𝐸𝑖
 functions similarly to random effects in ANOVA, taking into account grouped 

or hierarchical nature of the data when that structure is not directly captured through explicitly 

included variables like temperature and moisture content. 

To conclude, we show that regression within the GAMM framework, which extends 

classical ANOVA and linear regression, can reveal non-linear, physically motivated 

relationships between experimental variables and rheological behaviour. We find that 

relationships involving temperature 𝑇 and moisture content 𝑀𝐶 approximate Arrhenius type 



behaviour, i.e. they are log-linear with respect to 1/𝑇 and 1/𝑀𝐶, even when non-linear effects 

are permitted. The strength of the effect is found to follow temperature > moisture content > 

protein concentration, with protein concentration showing no statistically significant effect.  

 

Table 1 Non-linear mixed models (model (M1)).  

Model component 𝛿𝑅𝑎𝑑𝑗
2   p-value  

Temperature  88.0 % < 10−16  

Moisture content  3.6 % 0.0002  

Protein content  0.1 % 0.79   
Experiment 7.8 % < 10−16  

 

Table 2 Linear mixed models (model (M2)).  

Model component 𝛿𝑅𝑎𝑑𝑗
2   p-value  

Temperature  87.9 % < 10−16  

Moisture content  3.6 % 0.00005  

Protein content  0.1 % 0.82   
Experiment 9.4 % < 10−16  

 

 
FIGURE 1: Fitted non-linear effects for (a) temperature, 𝑓𝑇(1/𝑇) and (b) moisture content, 𝑓𝑀𝐶(1/𝑀𝐶),, 

and quantile-quantile plot of (c) the random effect 𝜇𝐸𝑖
 of experiment. Panels (a) and (b) show partial 

residuals (blue dots) and confidence bounds for the fitted non-linear effect. The confidence bounds are 
so close to the fitted non-linear effect in (a) that they are not visible. Fitted effects for protein 

concentration are excluded from the visualization as it was not significant. The figure was created 
using the draw-function from the gratia-package in R27. 
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