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ABSTRACT

Well-defined particle sedimentation can provide relevant information in characterizing
non-colloidal suspension. Nonetheless, the interaction between phases can become ex-
tremely convoluted as agglomerates are formed and broken, dynamically creating regions
of high and low shear-rate. Numerical simulations are an alternative to obtain detailed
descriptions of said interactions. In this work, the lattice-Boltzmann method is used
together with the discrete element method to solve for two-dimensional sedimentation
problems for both Newtonian and shear-thinning fluids.

INTRODUCTION

The presence of particles in a fluid can directly affect the observed rheological behaviour.
Particle agglomerates can change local observation, while the flow itself can affect the ag-
glomerate’s structure. In general, the settling velocity is a key parameter in characterizing
the non-colloidal solution.!

In the case of the settling, where the system is driven by the disturbances on the fluid
due to the dynamic of the particles, this interaction becomes complex, as the coupling
becomes more evident. Other parameters, as the degree of polydispersity can directly
affect the settling process as well as the formation and maintainment of aggregates.?
Simultaneously, the formation of agglomerates also depend on the rheological behviour.
Shear-thinning viscosity, viscoelasticity and thixotropy directly affects the formation of
the agglomerates.?

To do so, Eulerian-Lagrangian methods are well suited, as they can provide information
on the particle’s behaviour individually. Nonetheless, traditional finite volume and finite
difference methods require a numerical discretization rougher than the actual particle
size* and the interaction with the fluid is commonly associated with empirical models,
such as drag forces.® The lattice-Boltmzann method (LBM) then becomes an alternative,
as it inherently needs lattice sizes smaller then the solid boundaries, which leads to higher
discretization, at the cost of higher computational cost. Chen et al., for example, used the
LBM together with discrete elements to model two-dimensional suspension in Newtonian
fluids.®
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In this work, the four-way coupled lattice-Boltzmann-discrete-element method is used
to model a two-dimensional monodispersed suspension settling case through direct nu-
merical simulation (DNS) for both Newtonian and shear-thinning fluids. This allows to
obtain highly descriptive solutions of the flow in-between the agglomerates.

MODELS & METHODS

In order to model the particle settling, a combination of the lattice-Boltzmann and discrete
element (DEM) methods is used. The former consists on a mesoscopic approach to solve
the Navier-Stokes equations. When Multiple Relaxation Time operator is used,”® the
method is expressed as:

[i(R+TALt+ At) — wa (f9 — ;). (1)

where f; is the density distribution function, fi(eq is the equilibrium function, w;; are the
terms of the matrix w which contains the collision operators. The indices ¢ and j depend
on the velocity sets used (lv). In this case, 9 velocity sets are used for the two-dimensional
model, known as D2Q9.

The collision operator matrix is better described in the momentum base as w =

M™A M where M is an orthonormal base for the momentum transformation’ as to
obtaln a diagonal matrix for A. In practice, the equilibrium function is calculated di-

rectly in the momentum base as: m = M f(ca). The main diagonal of A is composed by
diag(A) = {0 Ae Ac 0 A, 0 Ay A, AL}, each h different X is related to a respective moment. In
particular, ), is related to the bulk viscosity and A, with the kinematic viscosity. As the
flow is considered incompressible, bulk viscosity effects are disregarded and A, A\, and A,
are chosen to provide stability, through empirical testing.” The last term is dependent on

the viscosity, the time-step (At), and on the lattice sound-speed (c,): v = ¢ !

At Ay 2

To account for the solid phase, the partially saturated method (PSM) is used,'® which
modifies the collision operator for a smooth transition to the solid region: f;(X+ ¢;At, t+

At) — fi(Xt) = (1 = p) Zj[wij(f](eq) — fi)] + B Cs, where (3 is a transition coefficient
dependent on the volume fraction, o. Here, it is chosen as:'°

a(Z,t) A1 — 0.5]

T l-a®@O)+ N - 05
10

(2)
The solid collision operator is hereby chosen as:

Cs = [ (p.¥s) = fi&.8) + (L= M)[fi(%.8) = £ (p. ¥)]. (3)
Whereas there are several collision operators, this provides good stability'' for A, — 1,

at the cost of sub-optimal convergence when compared with other methods.'?> The solid
velocity field is calculated through averaging all the particles within the same lattice,'?

o N omg®) . . . .

Vs = %L, where the superscript (n) indicates the n™ particle that share a same
n=0%

lattice in X and Vs is the field description of the solid velocity.

The fluid forces and torques at the n'! particle can be calculated as:'°

—»(n) AI’2 . 5 _,(n) AxQ . ~ . .
By == > [ﬁ(xs)zci ci,s]; T =% Z{[(Xg—pn)ﬁ(XS)]ZCi ci,s}, (4)
7 S p

S
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where Xs is the solid-covered region and p,, is the particle’s geometrical centre position. As
the model is two-dimensional, the hydraulic force is a distribution along the disregarded
direction. This way, the force is corrected by assuming that it affects a cylindrical shape of
height h = 2R, and that the projected area is truly spherical. Thus, the force is corrected
by: 2RA.y1/Asphere = 2R /.

The particles themselves are modelled through:

mnﬁnzzﬁmn+ﬁw+ﬁf_Amgv Inwnzzrfmn_’_’f‘w'i_rfﬂ (5)

where m,, and I,, are intertial terms, ﬁmn and "f‘mn come from the interaction with other
particles, ﬁw and Tw are due to collision with the wall, and Amg is the effective weight
considering buoyancy effects. Finally, & is the rotational speed. The interaction forces
are considered to be of a linear spring-damper type'* during contact.

Two different rheological behaviours are considered: (i) a Newtonian fluid and a (ii)

shear-thinning fluid which follows a Quemada'® model: v = v [;;EZ]Q, with [' = %

RESULTS

In this section, the simulation procedure is shown as well as the results obtained. The
relaxation parameters are set to A = 1, with exception of A,, which depends on the viscos-
ity. For the non-Newtonian case, the relaxation parameter is adjusted every time-step.'®
For the Newtonian case, several simulations with a single particle were conducted until
a lattice velocity Ax/At yielded a relaxation parameter )\, where the terminal velocity
matched the expected value. This lattice velocity was then used for the shear-thinning
case as well.

The characteristic times for the LBM and DEM can differ, thus, a sub-loop scheme is
adopted, where several DEM integrations are conducted through one LBM step. In this
case, a predictor-corrector scheme is used for the DEM.* The lattice size Az was set to
be smaller then the particle, with R/Axz > 5, where R is the particle radius.

The stiffness coefficients are considered to be large enough to avoid large overlaps but
small enough to allow large time-steps.?

The fluid domain consists in a rectangular area with width w = 80mm and height
w = 160mm. All the particles are initially organized in a rectangle with half the total
width. The particles are mono-dispersed with a radius of R = 0.5 mm. The particle
density was set to match glass beads, and is p, = 2650 |kg/m?|. The Newtonian fluid is
a 9:1 glycerin-water mixture, which resulted in a viscosity of 0.209 |Pa-s| and a density
of pr Newt = 1234 [kg/m3]. The shear-thinning fluid, on the other hand, had pgst = 1101
[kg/m3|, vo, = 0.0236 |[Pa-s|, 4. = 273.94 [1/s], p = 0.436 and x = 107°.

In Fig. 1, the simulation for the Newtonian fluid is shown. In this case, the particles
are divided into two groups, left-side, and right-side. The former is shown in a red
color gradient whereas the latter is a cyan color gradient. The innermost section is of a
darker shade, whereas the outer most lighter. The color and arrow fields characterize the
velocity — magnitude and direction. The insert region at the top shows the y-velocity of
each particle along its position in relation to the z-axis for the whole particle domain.

Similarly, the simulation of the shear-thinning suspension is shown in Fig. 2, where
different stages of development are shown. The shear-rate field is presented in Fig. 3.
The figure is zoomed in around the particle cluster.
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FIGURE 1: Vertical velocity field for ¢ = 0.1s, 1s, 5s and 10s for a Newtonian fluid. The particles on the
left follow a cyan color-gradient and on the right a red color-gradient. insert plots refer to the vertical
velocity distribution of the particles.

[ol[m/s]
0.20

t=5.0[s] t=10.0[s]

y[mm|

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
a{mm)] a{mm] a{mm] a{mm)| a{mm)|

FIGURE 2: Vertical velocity field for ¢ = 0.1s, 1s, 5s and 10s for a shear-thinning fluid. The particles on
the left follow a cyan color-gradient and on the right a red color-gradient. insert plots refer to the vertical
velocity distribution of the particles.

DISCUSSION

In this section, the results shown previously are discussed. From the Newtonian case,
shown in Fig. 1, it can be seen that the particles on the right and the left almost do not
mix. However, each of the halves shows inner rotation within the agglomerate structure.
The centre of the agglomerate has a larger pressure, which causes it to split. The velocity
profile of the particles is not perfectly symmetric, possibly of numerical nature, such as
asymmetries due to mesh-particle overlap, which can affect the area fraction.

As the shear-thinning fluid is simulated, a similar behaviour is observed. However, the
agglomerate does not detach vertically. The same splitting in the centre is seen as well as
strong inner rotation in the particle phase. As a particle separate from the main group,
it, by itself, does not carry enough weight and size to affect the shear-rate field, thus,
the large viscosities are able to break the fall, even though not at a full stop. In the last
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FIGURE 3: Shear-rate field for t = 0.5s, 1s, 5s and 10s for a shear-thinning fluid. The particles on the
left follow a cyan color-gradient and on the right a red color-gradient.

five seconds, a ring-like configuration is produced by said particles. At the same time,
the proximity to the wall also increases the shear-thinning viscous effects, which delays
significantly the sedimentation of the particles.

CONCLUDING REMARKS

In this work, the particle settling problem is explored. The lattice-Boltzmann method
is coupled with the discrete element method and a two-dimensional model is provided.
The expected physical behaviour is observed, with the particle dynamics as well as the
flow fields inside the particle agglomerates. On the presence of a shear-thinning fluid, as
soon as the particles separate from the main cloud body, they apparently get stuck in the
high-viscosity zone as their own weight is not enough to cause large perturbations of the
field, which causes them to slow down. In the future, three-dimensional behaviour can be
evaluated as well as viscoelastic models.
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